图1   AZ31镁合金在不同电压下电沉积LDH后的表面形貌


2.2 LDH涂层的组成

为了进一步确认在镁合金表面形成的物质确实是LDH,进行了XRD和FT-IR测试,其结果如图2和3所示。由图2得知,沉积LDH后在11.5°和20.6°观察到有衍射峰产生,这是水滑石层状结构的特征衍射峰。同时,相比于沉积电压为-1.5和-2.0 V的衍射峰,沉积电压为-1.7 V形成的LDH的特征衍射峰的强度有所增加,并且Mg和Mg(OH)2的特征衍射峰的峰强度有所降低,如在36.5°,63.2°,72.6° (JCPDS编号:35-0821) 和68.8° (JCPDS编号:44-1482) 处。

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司

图2   AZ31镁合金在不同电压下电沉积LDH后的XRD谱


图3显示了不同电压下沉积的LDH涂层的FT-IR谱。如所观察到的,3698 cm-1处峰对应于由于其八面体的空间构型导致的Mg-OH伸缩振动;以3440 cm-1为中心的强且宽的吸收峰为由金属羟基和氢产生的羟基伸缩带;2922和579 cm-1处是因为在制备样品时溶液吸收了空气中的CO2产生的峰,表明存在与夹层中存在的碳酸根离子键合的水分子;1633 cm-1处是由羟基形变产生的吸收峰;1384 cm-1处是NO3-的特征吸收峰;450 cm-1处的吸收峰是由Mg-OH振动产生[5,14]。这些结果证明通过电沉积确实在镁合金表面成功地合成了LDH涂层。通过观察图中LDH特征峰的强弱得知,在电压为-1.5 V时制得的LDH含量最低,在-1.7 V时的最高。

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司

图3   AZ31镁合金在不同电压下沉积LDH后的FT-IR谱


2.3 LDH涂层的耐腐蚀性能

图4为AZ31镁合金基体和LDH涂层的EIS谱。为了更清楚地解释EIS,用图中相应的等效电路来进行拟合。通常,较低频率下阻抗模值越高,涂层的耐腐蚀性越好。由图4a可知,镁合金基体在低频处 (f=0.1 Hz) 的阻抗模量|Z|=2.18×102 Ω·cm2,而LDH涂层的模量为6.326×104 Ω·cm2。相对于镁合金基体,涂层的阻抗增加了2个数量级。从图4b也可以清楚地看出涂层耐腐蚀性的提高。在未沉积LDH的情况下,Mg氧化生成的氧化膜是疏松多孔的,所以在高频率的交流电流下其相位角度几乎为0°。当沉积LDH涂层以后,相位角有所增加。对于镁合金基体而言有两个时间常数,在频率较高时镁合金表面的氧化膜已经遭到了破坏导致镁合金被快速腐蚀。在镁合金表面沉积LDH后时间常数向低频移动,电压为-1.7和-2.0 V时变化最大,证明电压为-1.5 V时的耐腐蚀性能最差。总之,LDH涂层为镁合金基底提供了良好的保护,并且当沉积电压为-1.7 V时显示出最佳的耐腐蚀性。

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司

图4   AZ31镁合金和在不同电压下沉积的LDH涂层在3.5%NaCl溶液中的EIS模值图和相位角图以及相应的等效电路图


通过Tafel测试对LDH涂层的耐腐蚀能力进行了进一步的评估,测试结果如图5所示。与未沉积涂层的镁合金基体相比,涂层的腐蚀电位 (Ecorr) 和腐蚀电流密度 (Icorr) 分别明显向更正和更低的值移动。当沉积电压为-1.7 V时,LDH涂层的Ecorr相对于镁合金的Ecorr (-1.56 V) 正向移动0.96 V,达到-0.60 V,表现出较强的耐腐蚀潜力。镁合金基体的Icorr为7.933×10-4 A·cm-2,不同电压下得到的LDH涂层的Icorr都有所降低,-1.5 V时涂层的Icorr为1.908×10-6 A·cm-2,-1.7 V时Icorr降低了3个数量级至7.882×10-7 A·cm-2,-2.0 V时Icorr为1.088×10-6 A·cm-2。综合考虑腐蚀电位和腐蚀电流密度的变化,得出在不同沉积电压得到的涂层的耐蚀能力按以下顺序降低:-1.7 V≈-2.0 V>-1.5 V,这与EIS结果非常一致。

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司

图5   镁合金和在不同电压下沉积的LDH涂层在3.5%NaCl溶液中的Tafel图


2.4 LDH涂层的电沉积机理

该方法基于通过还原NO3-产生OH-的电化学反应来沉积LDH (式 (1) 和 (2))。除了NO3-还原产生OH-以外,还可以通过电极反应生成OH-以促进LDH的产生 (式 (3))。在反应体系中会发生副反应生成MgO和Mg(OH)2 (式 (4) 和 (5))。所以只有确定了合适的沉积电位才能得到比较纯的LDH[15,16]。因为Mg2+和NO3-的浓度关系和溶液的pH值都会导致NO3-的还原电位发生显著变化,所以下一步将继续探索这二者对沉积的LDH性能的影响。

防腐保温,桥梁防腐,线塔防腐,铁塔防腐,高空防腐,钢结构防腐,钢结构防火,管道防腐,管道保温,储罐防腐,储罐清洗,3pe防腐钢管,防腐公司


3 结论

(1) 通过简单的电化学沉积法在镁合金表面成功合成了具有较强防腐能力的LDH涂层。

(2) 通过SEM,XRD和FT-IR测试证实在镁合金表面形成了LDH涂层,并通过Tafel和EIS测试验证了涂层的耐腐蚀能力。与镁合金基体相比,LDH涂层低频处的阻抗模值增加了2个数量级,其自腐蚀电位提高了0.96 V,腐蚀电流密度降低了3个数量级。

(3) 在-1.7 V下电沉积制备的LDH具有最优的耐蚀性。